Calculations#

This page summarizes the calculations that open_viewmin.NematicPlot can perform on imported Q-tensor data. The calculations are stored as data arrays of the mesh "fullmesh" and are inherited by all child meshes.

Free energy components calculated from Q-tensor#

The following arrays are calculated automatically from imported Q-tensor data.

array name

calculation

“LdG_L1”

\(f_1 = \partial_i Q_{jk} \partial_i Q_{jk}\)

“LdG_L2”

\(f_2 = \partial_j Q_{ij} \partial_k Q_{ik}\)

“LdG_L3”

\(f_3 = \partial_j Q_{ik} \partial_k Q_{ij}\)

“LdG_L4”

\(f_4 = \epsilon_{lik} Q_{lj} \partial_k Q_{ij} \)

“LdG_L6”

\(f_6 = Q_{ij} \partial_i Q_{kl} \partial_j Q_{kl}\)

“LdG_L24”

\(f_{24} = f_2 - f_3\)

“twist”

\(t_Q = -4/(9 S^2) f_4\)

“saddle-splay_Q”

\(\sigma_Q = 4/(3S) f_{24}\)

“cholestericity”

\(C_Q = \mathrm{t}_Q^2 - 2 \mathrm{\sigma_Q} \)

Linear combinations of Landau-de Gennes free energy components give the Frank free energy components in the uniaxial limit.

array name

calculation

uniaxial limit

“LdG_K1”

\(f_{\mathrm{splay}} = 2/(9 S^2) (-f_1/3 + 2 f_2 - 2/(3 S) f_6)\)

\(\rightarrow (\nabla \cdot \hat n)^2 \)

“LdG_K2”

\(f_{\mathrm{twist}} = (\mathrm{t}_Q + q_0)^2 \)

\(\rightarrow (\hat n \cdot \nabla \times \hat n + q_0)^2 \)

“LdG_K3”

\(f_{\mathrm{bend}} = 2/(9S^2) (f_1/3 + 2/(3S) f_6)\)

\(\rightarrow | \hat n \times (\nabla \times \hat n ) | ^2 \)

Frank free energy components#

The arrays below are computed from finite difference calculations on the director field (rather than taking the uniaxial limit of the LdG calculations, which take derivatives on the Q-tensor). These arrays are calculated when the user clicks Calculate -> Frank energy or calls NematicPlot.calculate_frank_energy_comps() from Python.

array name

calculation

“splay”

\(s_n = \partial_i n_i\)

“splay_vec”

\(\mathbf{s}_n = n_i \partial_j n_j\)

“curl_n”

\(\epsilon_{ijk} \partial_j n_k\)

“twist_n”

\(t_n = n_i \epsilon_{ijk} \partial_j n_k\)

“bend”

\(\mathbf{b}_n = n_i \partial_i n_j\)

“rotation_vector_n”

\(\hat \Omega_n = \nabla \times \hat n - \hat n (\hat n \cdot \nabla \times \hat n )\)

“Frank_K1”

\(f_{K1} = s_n^2\)

“Frank_K2”

\(f_{K2} = (t_n + q_0)^2\)

“Frank_K3”

\(f_{K3} = {\bf b}_n \cdot {\bf b}_n\)

“Frank_K24”

\(f_{K24} = \partial_i n_j \partial_j n_i - f_{K3}\)

“Frank_oneconst”

\(f_{K1} + f_{K2} + f_{K3}\)

chi-tensor#

The Efrati-Irvine “handedness” pseudotensor [1][2],

\[\chi_{ij} = n_l \epsilon_{jlk} \partial_i n_k\]
is adapted as a calculation on the Q-tensor,
\[\chi_{ij} = Q_{lm} \epsilon_{jlk} \partial_i Q_{km}.\]
It is useful in describing both cholesteric configurations and disclination lines. The following arrays are calculated when the user clicks Calculate -> Chi_tensor or calls NematicPlot.calculate_chi_tensor() from Python.

array name

calculation

“Chi”

\(Q_{lm} \epsilon_{jlk} \partial_i Q_{km}\)

“Chi^T Chi”

\(\chi_{ij}\chi_{jk}\)

“Chi Chi^T”

\(\chi_{ji} \chi_{kj}\)

The eigenvector of \(\chi^T \chi\) with the greatest eigenvalue provides an estimate of the rotation vector \(\hat \Omega\).

The eigenvector of \(\chi \chi^T\) with the greatest eigenvalue provides an estimate of the azimuthal direction around the disclination.

In the cholesteric ground state, only one eigenvalue is nonzero and the corresponding eigenvector is the cholesteric pitch axis. In a distorted cholesteric, the two nonzero eigenvalues correspond to eigenvectors of which one is the cholesteric pitch axis.

D-tensor#

The \(D_{ij}\) tensor gives information about a disclination line’s tangent vector and rotation vector.[3] The following are calculated when the user clicks Calculate -> D_tensor or calls NematicPlot.calculate_D_tensor() from Python.

array name

calculation

“D_tensor”

\(\epsilon_{gmn} \epsilon_{i \ell k} \partial_\ell Q_{m p} \partial_k Q_{n p}\)

“D^T D”

\(D_{ij} D_{jk}\)

“D D^T”

\(D_{ji} D_{kj}\)

The eigenvector of \(DD^T\) with the greatest eigenvalue provides an estimate of the rotation vector \(\hat \Omega\).

The eigenvector of \(D^TD\) with the greatest eigenvalue provides an estimate of the disclination line tangent vector.

Westin metrics#

Westin metrics for analyzing Q-tensor eigenvalues[4] are related to nematic uniaxial order \(S\) and biaxial order \(S_B\) as described in the table below. These arrays are calculated when the user clicks Calculate -> Westin metrics or calls NematicPlot.calculate_Westin_metrics() from Python.

array name

calculation

“Westin_l”[5]

\(S - S_B\)

“Westin_p”

\(4 S_B\)

“Westin_s”

\(1 - S - 3 S_B\)

References and footnotes#